人工智能的核心(人工智能的核心,是使计算机具有智能的主要方法)
分享兴趣,传播快乐,增长见闻,留下美好!
少年易老学难成,一寸光阴不可轻。
什么是机器学习
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能核心,是使计算机具有智能的根本途径。
Machine learning is a multidisciplinary discipline, involving probability theory, statistics,approximation theory, convex analysis, algorithm complexity theory and other disciplines. It specializes in the study of how computers simulate or realize human learning behavior to acquire new knowledge or skills and reorganize the existing knowledge structure to continuously improve its own performance.
It is the core of artificial intelligence and the fundamental way to make computers intelligent.
机器学习的定义
(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
(2)机器学习是对能通过经验自动改进的计算机算法的研究。
(3)机器学习运用数据或以往的经验,以此优化计算机程序的性能标准
Definition of machine learning
(1) Machine learning is a science of artificial intelligence. The main research object of this field is artificial intelligence, especially how to improve the performance of specific algorithms in experiential learning.
(2) Machine learning is the study of computer algorithms that can be improved automatically through experience.
(3) Machine learning is the use of data or past experience in order to optimize the performance criteria of computer programs
学习向量量化
互联网小常识:CIDR使得路由选择变成了从匹配结果中选择具有最长网络前缀的路由的过程,这就是“最长前缀匹配”的路由选择原则。
KNN 算法的一个缺点是,你需要处理整个训练数据集。而学习向量量化算法(Learning Vector Quantization,简称LVQ)允许选择所需训练实例数量,并确切地学习这些实例。
学习向量量化(LVQ)属于原型聚类,即试图找到一组原型向量来聚类,每个原型向量代表一个簇,将空间划分为若干个簇,从而对于任意的样本,可以将它划入到它距离最近的簇中,不同的是LVQ假设数据样本带有类别标记,因此可以利用这些类别标记来辅助聚类。
One disadvantage of KNN algorithm is that you need to process the whole training data set. The learning vector quantization algorithm (LVQ) allows you to select the number of training examples needed and learn these examples exactly.
Learning vector quantization (LVQ) belongs to prototype clustering, that is, trying to find a group of prototype vectors to cluster. Each prototype vector represents a cluster and divides the space into several clusters. Therefore, for any sample, it can be classified into the nearest cluster. The difference is that LVQ assumes that the data sample has category marks, so these category marks can be used to assist clustering.
如果您对今天的文章有独特的想法,欢迎给我们留言。
让我们相约明天,祝您今天过得开心快乐!
互联网小常识:安装DNS服务时,根DNS服务器会被自动加到系统中。使用”nslookup“对DNS服务器进行测试,如果仅测试域名到地址的转换功能使用ping域名命令即可。
内容|JTY
排版|JTY
审核|Meng
本文由LearningYard新学苑原创,
部分图片、视频素材来源网络,如侵权请沟通。
参考资料:
百度图片(图片)
百度百科(文字)
有道翻译(翻译)
互联网小常识:蓝牙软件结构标准包括核心和应用协议栈两大部分。工作在2.402-2.480GHZ的ISM波段,标准速率1Mbps。
免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186