人工智能基础教程 pdf(人工智能基础教程入门)

Mark wiens

发布时间:2022-09-18

人工智能基础教程 pdf(人工智能基础教程入门)

 

原文 | Ray Alez

此文是想要进入人工智能这个领域、但不知道从哪里开始的初学者最佳的学习资源列表。原文是 Ray Alez 编写的Artificial Intelligence resources,简单翻译后供大家参考。

01 机器学习

有关机器学习领域的最佳介绍,请观看Coursera的Andrew Ng机器学习课程(https://www.coursera.org/learn/machine-learning)。它解释了基本概念,并让你很好地理解最重要的算法。

有关ML算法的简要概述,查看这个TutsPlus课程Machine Learning Distilled(https://code.tutsplus.com/courses/machine-learning-distilled)。

Programming Collective Intelligence(https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications/dp/0596529325 )这本书是一个很好的资源,可以学习 ML 算法在 Python 中的实际实现。 它需要你通过许多实践项目,涵盖所有必要的基础。

这些不错的资源你可能也感兴趣:

◆Perer Norvig 的Udacity Course on ML(ML Udacity 课程)(https://www.udacity.com/course/intro-to-artificial-intelligence—cs271)

◆Tom Mitchell 在卡梅隆大学教授的Another course on ML(另一门ML课程)(http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml)

◆YouTube 上的机器学习教程mathematicalmonk(https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA)

02 深度学习

关于深度学习的最佳介绍,我遇到最好的是Deep Learning With Python(https://machinelearningmastery.com/deep-learning-with-python/)。它不会深入到困难的数学,也没有一个超长列表的先决条件,而是描述了一个简单的方法开始DL,解释如何快速开始构建并学习实践上的一切。它解释了最先进的工具(Keras,TensorFlow),并带你通过几个实际项目,解释如何在所有最好的 DL 应用程序中实现最先进的结果。

在 Google 上也有一个great introductory DL course(https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal),还有Sephen Welch的great explanation of neural networks (http://lumiverse.io/series/neural-networks-demystified)。

之后,为了更深入地了解,这里还有一些有趣的资源:

◆Geoffrey Hinton 的 coursera 课程Neural Networks for MachineLearning(https://www.coursera.org/learn/neural-networks)。这门课程会带你了解 ANN 的经典问题——MNIST 字符识别的过程,并将深入解释一切。

MIT Deep Learning(深度学习)一书。

UFLDL tutorial by Stanford(斯坦福的 UFLDL 教程)(http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial)

deeplearning.net教程 (http://deeplearning.net/tutorial/)

◆Michael Nielsen 的Neural Networks and Deep Learning(神经网络和深度学习)一书(http://neuralnetworksanddeeplearning.com/)

◆Simon O. Haykin 的Neural Networks and Learning Machines(神经网络和机器学习)一书(https://www.amazon.com/Neural-Networks-Learning-Machines-Edition/dp/0131471392)

03 人工智能

Artificial Intelligence: A Modern Approach (AIMA)https://www.amazon.com/Artificial-Intelligence-Modern-Approach-Edition/dp/0136042597 (人工智能:现代方法) 是关于守旧派 AI最好的一本书籍。这本书总体概述了人工智能领域,并解释了你需要了解的所有基本概念。

来自加州大学伯克利分校的 Artificial Intelligence course(人工智能课程)https://www.youtube.com/channel/UCshmLD2MsyqAKBx8ctivb5Q/videos是一系列优秀的视频讲座,通过一种非常有趣的实践项目(训练AI玩Pacman游戏 )来解释基本知识。

我推荐在视频的同时可以一起阅读AIMA,因为它是基于这本书,并从不同的角度解释了很多类似的概念,使他们更容易理解。它的讲解相对较深,对初学者来说是非常不错的资源。

大脑如何工作

如果你对人工智能感兴趣,你可能很想知道人的大脑是怎么工作的,下面的几本书会通过直观有趣的方式来解释最好的现代理论。

◆Jeff Hawkins 的On Intelligence(有声读物)https://www.amazon.com/On-Intelligence-Jeff-Hawkins/dp/0805078533

Gödel, Escher, Bachhttps://www.amazon.com/G%C3%B6del-Escher-Bach-Eternal-Golden/dp/0465026567

我建议通过这两本书入门,它们能很好地向你解释大脑工作的一般理论。

其他资源

Ray Kurzweil的How to Create a Mind(如何创建一个头脑Ray Kurzweil) (有声读物).https://www.amazon.com/How-Create-Mind-Thought-Revealed/dp/0143124048/

Principles of Neural Science(神经科学原理)https://www.amazon.com/Principles-Neural-Science-Fifth-Kandel/dp/0071390111/ref=sr_1_1?ie=UTF8&qid=1469789160&sr=8-1&keywords=principles+of+neural+science是我能找到的最好的书,深入NS。 它谈论的是核心科学,神经解剖等。 非常有趣,但也很长 - 我还在读它。

04 数学

以下是你开始学习AI需要了解的非常基本的数学概念:

互联网小常识:IPV6地址长度为128位,分为单播地址、组播地址、多播地址和特殊地址。如果某一段全为0则可以缩写为0,多个连续的0可以缩写为0::0,但是在地址中只能出现一次。

微积分学

◆ Khan Academy Calculus videos(可汗学院微积分视频)https://www.youtube.com/playlist?list=PL19E79A0638C8D449

◆MIT lectures on Multivariable Calculus(MIT关于多变量微积分的讲座)https://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/index.htm

线性代数

◆Khan Academy Linear Algebra videos(可汗学院线性代数视频)https://www.youtube.com/playlist?list=PLFD0EB975BA0CC1E0

◆MIT linear algebra videos by Gilbert Strang(Gilbert Strang的MIT线性代数视频)https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/

Coding the Matrix(编码矩阵) - 布朗大学线程代数CS课程https://cs.brown.edu/video/channels/coding-matrix-fall-2014/?page=2

概率和统计

◆可汗学院 Probability(概率)https://www.youtube.com/playlist?list=PLC58778F28211FA19与 Statistics(统计)https://www.youtube.com/playlist?list=PL1328115D3D8A2566 视频

◆edx probability course (edx概率课程)https://www.edx.org/course/introduction-probability-science-mitx-6-041x-1.VJfS2LQAKc

05 计算机科学

要掌握AI,你要熟悉计算机科学和编程。

如果你刚刚开始,我建议阅读Dive Into Python 3(深入Python 3)http://www.diveintopython3.net/这本书,你在Python编程中所需要的大部分知识都会提到。

要更深入地了解计算机编程的本质 - 看这个经典的MIT course(MIT课程)https://www.youtube.com/watchv=2Op3QLzMgSY&list=PLE18841CABEA24090t=253。

这是一门关于lisp和计算机科学的基础的课程,基于 CS -结构和计算机程序的解释中最有影响力的书之一。

06 其他资源

◆ Metacademy - 是你知识的包管理器。 你可以使用这个伟大的工具来了解你需要学习不同的ML主题的所有先决条件。https://metacademy.org/

◆ kaggle - 机器学习平台 https://www.kaggle.com/

附课程链接:AIUh人工智能学院 http://ai.pinggu.org/

机器学习与语言课程报名:http://www.peixun.net/view/833.html

来源 | 开源中国

译文链接:http://www.oschina.net/news/78629/beginners-how-to-learn-from-zero-artificial-intelligence

原文链接:https://medium.com/digitalmind/artificial-intelligence-resources-f4efeac949b4.16txl2mkp

【灯塔大数据】微信公众号介绍:中国电信北京研究院通过大数据技术创新,自主研发了业内领先的灯塔大数据行业应用创新平台,灯塔面向市场研究、广告营销、商业地理、金融征信、人力资源等诸多行业领域,提供零售研究、消费者研究、店铺选址、精准营销、泛义征信,背景调查等服务,助力企业在大数据时代扬帆远航。

微信公众号【灯塔大数据】关键字信息:

【IDC】 下载IDC报告原文

【六个关键词】 下载运营商大数据PPT

【大数据日】 下载演讲材料

【十月融资】下载2016年10月投融资月报

【网络安全】获取国民网络安全报告全文

【23个理由】下载《大数据让你兴奋的23个理由》电子书

互联网小常识:网络管理被分为五大部分:配置管理、性能管理、记账管理、故障管理和安全管理。

【思维导图】下载12种工具的获取方式

【 灯塔 】 查看更多关键字回复

互联网小常识:目前无线网络的标准有IEEE802.11b,IEEE802.11a,IEEE802.11g等,IEEE802.11b仍是使用最广泛的标准。IEEE802.11b带宽最高可达11Mbps,而实际中还可采用5.5Mbps,2Mbps和1Mpbs。

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186