人工智能ai(人工智能ai公司排行榜)

Mark wiens

发布时间:2022-09-02

人工智能ai(人工智能ai公司排行榜)

 

9 月 2 日,在 2022 世界人工智能大会上,亚马逊云科技举办了 人工智能前沿技术趋势与最佳实践 线上分论坛,分享了亚马逊云科技在人工智能与机器学习(AI/ML)领域的趋势洞察和前沿技术应用的最佳实践,并探讨了 AI/ML 如何赋能行业数字化转型。亚马逊云科技通过三大 AI/ML 创新驱动力——处理海量多样化数据、加速推动产业规模化落地以及赋能更多 AI 开发者,加速推动各行业创新。同时,在本次世界人工智能大会上,亚马逊云科技基于图神经网络技术构建的 Amazon Neptune ML 入围了 2022 年度 SAIL(Superior AI Leader,卓越人工智能引领者)TOP30 榜单。

亚马逊云科技人工智能与机器学习产品副总裁 Bratin Saha 在本次分论坛上发表了主题演讲,他表示,AI/ML 技术是当今最具变革性的技术之一,正在解决人类面临的一些最具挑战性的问题,也为我们提供了前所未有的新机遇。目前,全球数以万计的客户正借助我们全栈式的 AI/ML 服务,从海量数据中获得洞察、做出更准确的预测、减少运营开销、改善客户体验并创建全新的业务线,助力企业成为数据驱动的组织。

推出专门构建的数据准备工具,帮助客户处理海量多样化数据

如今,每时每刻都会有海量结构化以及如音频、视频、图像、医疗数据等非结构化数据的产生,企业要借助 AI/ML 技术创新,需要处理海量多样化的数据。亚马逊云科技为机器学习构建了专用的数据准备工具,帮助企业从海量多样化数据中获取洞察。其中,Amazon SageMaker Data Wrangler 为表格数据的数据准备提供了无代码/低代码接口,将聚合和准备机器学习数据所需的时间从几周缩短到几分钟;Amazon SageMaker Ground Truth 能够轻松地从非结构化数据创建高质量的训练数据集,有效降低数据标注成本;Amazon SageMaker Feature Store 专门用于存储、共享和管理 ML 模型特征。

提供从底层到应用的全套服务,加速推动 AI/ML 产业规模化落地

互联网小常识:IEEE802局域网参考模型对应于OSI参考模型的数据链路层和物理层。但是将数据链路层拆分为LLC(逻辑链路控制子层)和MAC(介质访问控制子层)。

企业要获得实际的业务价值,需要规模化部署 AI/ML,将其融入到业务的方方面面。亚马逊云科技如今为客户构建训练模型的参数已达到数十亿的规模,每个月提供数千亿预测结果,这样的规模效应推动了亚马逊云科技 AI/ML 的产业化落地实践。其中,在底层的基础设施,亚马逊云科技自研的面向机器学习推理和训练的加速芯片 Amazon Inferentia 和 Amazon Trainium,可以帮助客户实现从扩展训练工作负载到部署加速推理的端到端 ML 计算流程。Amazon Elastic Compute Cloud (Amazon EC2) P4d 实例与 G5 实例为客户提供了数倍于前代产品的 ML 性能。亚马逊云科技还在 Amazon SageMaker Studio 中提供了集成的机器学习工具,并通过 Amazon SageMaker Pipelines 自动化机器学习工作流程,极大提升了开发人员的工作效率。

降低机器学习门槛,赋能更多开发者共同构建 AI/ML 解决方案

亚马逊云科技通过降低机器学习开发门槛,让更多开发者参与其中。其中,Amazon SageMaker Studio Lab 让任何人都可以轻松、快速地构建学习和实验机器学习的开发环境;Amazon SageMaker Canvas 提供无代码扩展功能,非专业技术人员也能够快速从机器学习模型中获得准确的预测结果;基于 Amazon AutoML 框架的 Amazon AutoGluon 开源库使得开发人员只需编写几行代码,即可利用深度学习来构建应用程序。亚马逊云科技还通过与高校建立合作、举办 Amazon DeepRacer 比赛等项目,激发更多人参与机器学习创新。

互联网小常识:FTP服务使用C/S工作方式。在进行文件传送时,FTP客户机和服务器之间建立两个连接控制连接和数据连接。

此外,亚马逊云科技在本次分论坛上还分享了图神经网络、自动化机器学习(AutoML)等 AI/ML 前沿技术的应用实践。其中,亚马逊云科技基于图神经网络技术构建的 Amazon Neptune ML 在本次世界人工智能大会上,入围了 2022 年度 SAIL(Superior AI Leader,卓越人工智能引领者)TOP30 榜单。作为 Amazon Neptune 图数据库的一项新功能,它可以实现整个图神经网络模型创建、配置、训练、测试和验证过程的自动化,并依托 Amazon SageMaker 平台,自动化部署模型和完成模型推断的调用。在实际应用中,Amazon Neptune ML 解决了工业环境海量多样化数据、开发测试部署周期长和技术门槛高的难题。使用 Amazon Neptune ML 可以让图神经网络的部署时间从几周变成几天,并可以轻松地应对诸如欺诈检测和推荐等场景下数亿级别的数据规模。

互联网小常识:IEEE802.11b的典型解决方案:对等解决方案、单接入点解决方案、多接入点解决方案、无线中继解决方案、无线冗余解决方案和多蜂窝无缝漫游解决方案。

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186