物联网技术架构(基于物联网的)
随着物联网或物联网解决方案的出现,许多行业都从提高生产力和运营可靠性的物联网技术中受益匪浅。物联网解决方案提供了一种设置,其中包括传感器、仪器、机器和许多其他连接设备,无需人工干预即可运行。本文将慢慢分解物联网解决方案架构,以更多地了解物联网实施的分步过程。
什么是物联网解决方案架构?
物联网简而言之就是将事物都连上网络,其中事物一词可能指汽车、建筑物、机器,甚至是人。物联网解决方案是一个由互连的传感器、计算设备和机器组成的系统,它们通过网络连接起来,形成一个完整的操作。因此,物联网解决方案架构是从收集原始数据到获得预测或结果的逐步数据流的设计。物联网解决方案架构没有通用标准,但通常该技术需要四个主要组件,包括:
传感器/执行器
网关和网络
云或数据服务器
应用层
第1 步:原始数据收集
作为每个物联网系统的根,连接的设备负责提供物联网系统的目的,即收集数据。因此,这项技术需要传感器收集预测所需的所有原始数据。传感器从过程或环境条件中收集数据,例如质量控制、温度、湿度、装配线的速度等等。此外,物联网解决方案架构允许以指令或命令的形式进行双向数据流,通知执行器采取控制或维护流程所需的任何操作。在某些情况下,传感器可能会检测到需要立即响应的情况,以便执行器可以实时执行补救措施。在传感器编译完所有原始数据后,
原始数据收集的物联网解决方案:
温度感应器
GPS/接近
运动/速度传感器
电动执行器
液压马达
第2 步:物联网网关和数据采集系统 (DAS)
数据采集系统(DAS) 在将原始模拟数据转换为可编程数字数据方面发挥着重要作用。互联网网关在传感器和网关之间提供网络连接以执行 DAS。此网络连接可以通过无线或有线连接,比如 LAN、USB 或 GPIO。在这一层 IoT 解决方案架构中,网关和 DAS 还有助于控制、过滤和选择数据,以最大限度地减少发送到云端的信息量,从而影响功率和整体性能。
在功耗和性能之间找到适当的平衡对于优化整体性能至关重要。因此,功率预算起着重要作用。功率预算是一种考虑操作整个物联网解决方案架构所需的可能功率的每个细节的行为。操作员必须考虑描述实际能量输出和计算能量输出之间关系的性能比或百分比。因此,通过比较理论和实际结果,可以更精确地计算功率预算。有人可能想知道为什么这如此重要。以下是物联网解决方案架构中功率预算的一些要点:
互联网小常识:网络应用软件开发与运行环境包括网络数据库管理系统与网络软件开发工具。
功率可用性:功率预算确保它仍然足够,并有足够的功率来确保未来的运行。
发热:满足功率和性能之间的适当平衡将防止过热。过热可能对计算机组件有害或导致性能下降。
成本:更大的功率意味着更大的组件,这意味着操作计算机需要更高的成本。
物联网网关和数据采集系统(DAS) 的物联网解决方案:
1. SoC与Socket设计
在计算出整个物联网解决方案架构所需的功率预算后,下一步就是要知道要使用哪个处理器。在这里,我们有SoC(片上系统)和Socket设计。SoC 或片上系统是将所有计算机组件组合到单个基板系统上的集成电路。例如,除了CPU之外,它还包括GPU和内存存储等高级外围设备。因此,这种处理器设计通常用于节能和空间受限的部署。
另一方面,插座设计是主板上的单个连接器,提供与CPU的机械连接和电气接口。虽然插座芯片设计允许多个复杂的工艺,但由于它运行在高性能,这也意味着它具有更高的热设计功率(TDP)或更多的功率。因此,插座式芯片设计处理器需要额外的冷却,以避免可能导致故障和热节流的高温。对于选择哪种类型的处理器设计没有明确的解决方案;每个物联网解决方案都是根据处理能力和要求精确选择的。
2. 性能加速——用于实时处理的 CPU、GPU 和 M.2 加速器
性能加速器是能够从CPU 卸载任务并提高性能以获得实时决策的微处理器。仅一个 CPU 可能不足以处理来自越来越多的物联网设备的大量数据。因此,性能加速器利用并行计算,系统可以一次同时处理各种任务。物联网解决方案架构可以利用的一些性能加速器包括多核 CPU、GPU、VPU、NVME M.2 存储等等。在性能加速器的帮助下,边缘计算机可以处理来自多个物联网设备的所有数据,并在生成数据的地方执行复杂的分析。
第3步:边缘处理
在这一层的物联网解决方案架构中,所有前期已经数字化和积累的模拟数据都会归结为这个过程,称为预处理或边缘处理。在这个阶段,机器学习可以非常有助于向系统提供反馈并管理整个正在进行的过程,而无需等待来自云端的指令。因此,机器学习通过在边缘处理一些数据来帮助减少发送到云或数据中心的数据量。
互联网小常识:FTP服务器配置的主要参数有:域(一个域由ip地址和端口号唯一识别)、匿名用户、命名用户和组。
物联网中的工作负载整合
需要坚固的边缘计算解决方案作为所有数据预处理的媒介。此外,坚固的边缘计算解决方案通过多核处理器、巨大的数据存储和各种I/O 选项提供可扩展的高级处理能力。因此,通过利用强大的边缘计算解决方案连接所有传感器、设备和物联网基础设施,可以在减少硬件占用的情况下执行物联网解决方案架构流程。
第4 步:在云或数据中心进行进一步分析
在物联网解决方案架构的第四步,云或数据中心作为整个物联网架构流程的大脑延伸。数据中心或基于云的系统专门设计用于存储、处理和分析来自多个传感器或站点的大量数据,以进行更深入的分析。在这个阶段,数据中心将收集到的所有数据结合起来,以获得更全面的物联网整体架构图和可操作的预测。最后,预测可以直接传回传感器或执行器或最终用户应用程序。
第5 步:用于状态和数据管理的人机界面 (HMI)
这是物联网解决方案架构的最后一步。如前所述,来自云或数据中心的最终预测将传回传感器/执行器或直接传给最终用户。因此,在与最终用户直接接触时,考虑物联网平台至关重要。HMI 或人机界面是提供人机交互的图形用户界面 (GUI)。HMI 允许操作员管理正在进行的流程并显示数据可视化。因此,物联网中的 HMI 对于实现来自机器系统的远程交互和可视化是至关重要的。
互联网小常识:VLAN通常用VLAN ID和VLAN name表示。VLAN ID为12位0-1005为标准范围,1025-4096为扩展范围,其中1-1000为以太网VLAN ID.1002-1005为FDDI和Toke Ring的VLAN ID.VLAN name为32个字符表示,可以是字母和数字。缺省为VLAN00xxx 。
免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186