人工智能的编程语言(人工智能的编程语言主要有)

Mark wiens

发布时间:2022-09-22

人工智能的编程语言(人工智能的编程语言主要有)

 

来源 | medium

编译 | 张涛

责编 | Carol

AI系统的开发必须有计算机代码,而计算机程序的开发有不同类型的编程语言可以选择。本文分析哪些编程语言最适合你的人工智能或机器学习用例开发。

文中给出了一个想要在人工智能行业成功所需的5种编程语言的简单列表。针对给定的人工智能或机器学习项目,每种语言都有相应的优势和缺点,所以在选择开发语言前要考虑最终的目标。

这5个最适合人工智能行业的编程语言是:Python;R;Java;Scala;Rust。

Python

Python是人工智能行业最主流的编程语言,因为python具有易于学习的语法、大量的库和框架、对众多AI算法的动态适用性、而且相对容易编写。

Python支持面向功能、面向对象和面向过程的开发方式。此外,大量开放社区还在帮助python语言处在计算机科学行业的前沿。

与其他编程语言相比,python的缺点包括是运行速度慢、面向移动设备的编码功能较差、不利于处理内存密集型任务。

R

互联网小常识: P2DR安全模型:策略(Policy)、防护(Protection)、检测(Detection)、响应(Response)。

R是另一个机器学习编程语言。R语言最常用于数据分析、大数据建模和数据可视化。R语言包含多个包设置和大量的材料,使得其非常适合处理数据为中心的任务。

R语言的缺点包括大量使用内存、缺乏基本安全功能(无法嵌入web应用中)、和基于古老的S编程语言。

Java

Java是一种面向对象的编程语言,优势包括可以与搜索算法(搜索算法是能够有效支持大规模项目的简化框架)很好地结合、易于调试代码等。此外,Java也有完善的社区支持和大量的开源库。

与其他语言相比,Java的缺点包括性能不佳;由于运行在Java虚拟机之上,因此内存使用效率低下。以上两个缺点会导致硬件成本增加。

Scala

互联网小常识:网络关键设备选型的基本原则是:a、选择成熟的主流产品,最好是一家厂商的产品。 b、主干设备一定要留有一定的余量,注意系统的可扩展性。c、对于新组建网络一定要在总体规划的基础上选择新技术、新标准与新产品,避免因小失大。

Scala是一个可扩展的编程语言,可以处理大量大数据。Scala支持支持面向对象和函数式编程的风格。由于其简洁的代码风格,Scala比其他语言更具可读性和易于编写。

Scala语言的速度和性能使得其非常适合机器学习和AI模型,并具有相对无差错的编码,在必要时容于进行调试。

Scala的不足包括所有面向对象和函数式编程的缺点。因为该语言融合了多种编程风格,因此使得理解类型信息更加困难。此外,切换回面向对象样式的选项也可能被视为弊端,因为在编写代码时不会在功能上进行思考。

Rust

Rust是系统级的编程语言。创建该语言的目的是编写安全代码,也就是说对象是由程序本身管理的。这样程序员就无需进行指针计算或独立管理内存。使用的内存较少一般会使代码更简洁,因此可能更易于编程。

比其他语言相比,Rust语言的缺点包括编译器更慢、没有垃圾回收机制、开发速度慢(与python对比)。

(*本文由AI科技大本营编译,转载请联系微信1092722531)

【end】

福利直达!CSDN技术公开课评选进行中,参与投票即有机会参与抽奖!大奖福利请见下方海报,承担你的2020全年技术干货!

技术驰援抗疫一线, Python 线上峰会免费学!

11年艺术学习转投数学,他出版首本TensorFlow中文教材,成为蚂蚁金服技术大军一员

2.7 亿学生宅家上课,家长有意见了......

2020 年,远程办公太难?技术大佬齐支招!

数据分析如何帮助揭示冠状病毒的真相?

2020年区块链领域最具影响力人物Top 20

互联网小常识:交换机要丢弃的数据帧是目的地址与源地址相同的或者出于安全机制考虑不能转发的。

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186